

QubitEnergy

* DIGITAL ENERGY INFRASTRUCTURE

* The problem

Climate crises

The biggest challenge right now for humanity

We are behind our goals!

Accelerating electrification and reaching our climate goals

Buildings are more than half of the problem!

The bottleneck = our grid

Take too much time + cost alot to build new grid

* The problem

Climate crises

The biggest challenge right now for humanity

Extreme weather, rising sea levels, species extinction, food and water shortages, mass displacement, and economic collapse.

We are behind our goals!

Accelerating electrification and reaching our climate goals

Electricity bill and nettleie are getting more expensive Industries in norway moving

Buildings are more than half of the problem!

We're on track for a 2.7°C rise, far above the 1.5°C target. To meet it, CO₂ emissions must drop 45% by 2030, but current policies may increase emissions by 10-15% instead.

The bottleneck = our grid

Take too much time + cost alot to build new grid

* The problem

40%

Buildings are responsible for **40% of global CO₂ emissions**

20-30%

Due to grid limitations, **about 20-30% of renewable energy** for buildings is curtailed or wasted due to handling issues.

55%

Buildings are the largest consumers of electricity globally. They are estimated to consume around **55%** of total electricity produced

20-30%

Transmission and distribution losses can result in **20-30% of energy being lost** from a total of 10,000 MW due to grid bottlenecks.

* The gain

Qubit Energy wants to solve this by..

1. Make building energy smart and dynamic

By energy optimisation and prediction

2. Create microgrids and virtual power plant

By moving away from old centralized system, towards more decentralized and distributed system

Our solution

A cloud based software that makes **buildings energy smart**, connects the building to a bigger **nettwork of buildings**,

- Optimise based on historical data
- · Look ahead and react in time

- Buildings within the radius, communicate and interact in an independent energy system = microgrid
- Everything is controlled virtually and automated (VPP)

- The independent system uses flexibility and reserve markets to buy when its cheap, and sell back on high price
- Balancing the grid during peak hours (peak shaving)

Incentives and motivations

Customer onboard plan + value prop

Try for free, find value, then pay.

- We connect to AMS and other hubs
- Gather, analyse data
- Find anomalies and give suggestion
- Predict 48h+

Stage 1

- Cut down 20% electricity bill
- Cut peak energy costs by 25% with accurate 48-hour forecasts

- Connect to flex and reserve markets
- Make building automated marked dynamic

Stage 2

- Earn 10-15% in additional revenue by accessing flexible energy markets.
- Reduce grid reliance by 30% with integrated solar and battery systems.

- Connect solar and
- batteries

- Stage 3
- Reduce electricity bills by 20-30% and CO₂ emissions by **50**%.
- · Achieve ROI on solar and batteries in 3-5 years.

Establish microgrid = two+ building within 2km m2

(In design)

Stage 4

Future product roadmap

A suite of intelligent products to achieve decentralized systems

* Competition

This is how we are different

Real-Time Data Processing

Advanced Predictive Analytics

Flexibility Market

* Financials

- Cost of Goods Sold (COGS) (\$): Direct costs to produce or deliver your services.
- Gross Profit: Revenue minus COGS, showing profit before operating expenses.
- Operating Expenses (OPEX): Ongoing business costs (e.g., salaries, marketing).
- Net Profit: Final profit after all expenses are subtracted.
- Cash Inflows: Total cash coming into the business.
- Cash Outflows: Total cash being spent.

- Net Cash Flow: Cash remaining after outflows are deducted from inflows.
- Customer Acquisition Cost (CAC): Cost to gain one new customer.
- Customer Lifetime Value (CLTV): Expected revenue from one customer over their lifetime.
- **Break-even Point (in years):** Time to cover costs and start making profit.

Year	Revenue (\$)	Cost of Goods Sold (COGS)	Gross Profit	Operating Expenses (OPEX)	EBITDA	Net Profit	Cash Inflows	Cash Outflows	Net Cash Flow	Customer Acquisition Cost (CAC)	Customer Lifetime Value (CLTV)	Break-even Point (in years)
2025	200000	80000	120000	50000	70000	30000	220000	120000	100000	500	3000	2.0
2026	600000	240000	360000	120000	240000	12000 0	650000	400000	250000	450	3500	1.8
2027	1500000	600000	900000	250000	650000	40000 0	1600000	1000000	600000	400	4000	1.5

What have we done by now

Research project

- **IFE:** Al models for DER coordination, softfunding from RFF 500kNOK
- V2X: Pre-project with Enova, soft funding 2mNOK, Møller Mobility Group
- EuroFlex: Flexibility pilot with partners, softfunding from Statnett & Enova 40% all cost

Global value prop

- Up to **1,500 tons** of CO₂ avoided annually per MW
- Up to **200 MW** in grid balancing services
- Enhancing grud stability by up to 40% compared to traditional methods
- Reduce peak load demand by **10-15**%

* Market opportunity

The market is expected to grow at a Compound Annual Growth Rate (CAGR) of 20-25%.

\$1B \$70+B \$30B Total Addressable Market (TAM) Serviceable Addressable Market Early Target Market (SAM) The market is projected to grow by over 70\$ billion by 2030 2022 2030

Solar + Storage

1-5%

Potential Market Share in 5-7 years

* The team

Amir Zarei

Founder
Experience in technology and business within the energy sector

Zaptec, Accenture, Microsoft, TietoEvry

Business & Strategy, Harvard

Computer Science, UiO.

Amir Ali Wafai

CTO

Extensive tech experience as a consultant in various energy projects, such as Equinor

TietoEvry

Computer Science, UiO

Thomas Karlsnes

Business Development and Commercialization

Experience in sales and marketing within the energy sector.

BI Norwegian Business School

Kristina Hanitz

User Experience specialist and User Interface designer

Ecperience from GeoData and Ruter mobility

The Oslo School of Architecture and Design

Markus Haugsdal

Software Engineer

A highly experienced technology consultant with a strong background in various sector projects,

Avinor, TietoEvry

Computer Engineering, University of South-Eastern Norway